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NOTES ON A TIEORY OF SPINNING SHELL

The theory expounded here is based mainly on that of Fowier,
Gallcp, Lock and Richmond} except that the coordinante system is
attached to the actual traJectory instead of the particle tra-

Jjectory. They are foliowed in their foriunat

w in their fortunats chwicve of symbols,
especially for the damp,ng factors.

The eguations for the complex yaw ars dsveicped on the ususl
linear assumption and their solutionz obtained. Thes dynswical
stahility of shall ia digcusszd. It i8 bare nointed out that;
for practical purpcses, it is nol s2zertial that a shell be
dynamically stable at all points of its trajectory. A reussuring
comparison is made between the results of this theory and those
of PCIR and rRelley and McShane.

"Phil. Trane. Roy. Soc. &, voi. 221, pp. 295-387 {1920).
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HEFINITION OF SYMBJLS

a¢ Dypamical constants and varisbles.
be Geometric magnivudes snd vectors.-
8» Asrodynamic forces.

d. Damping factors.

es _l}znmlica.l. constants and variasbles:

A
3
n
v

N

Axiel moment of inertia of the shell

Veloeity
Spyin of the shell about its longitudinal axis

be Geometric magnitudes and veciors:

1, 4 e0d k - unit vectors pointinc elsig she directions
of the x, y and z axes rezpectively.

A the unit vector kaving the direction of the axis of

the shell. If the direction cosines of A are f,
nandn, A= f1+m}+ nk

3 the angle of yvaw - the angle hetwasn the trajectory

s
1

(¢}
)

and the longitudinal sxis of the shell.

L]
A 2 A, e vecotor aagulax velouciiy of the axis oI

the shell.

Asrodynemic forces:

n

e

Dirug - the force zcting on the projectile along the
trajeciory opposite to its direction of motion.

Overturning momant assumsd tc act in the plane of
ths yav ard assumed to be proportional to sin 8.
Thus, M may be written as M = u 8in'0, vhere:p
is ce&ll!d the momeat co-factor. ‘

Cross wind force - a force acting perpendicularly
to the trajectory, in the plane of the yaw:
essumed tc be pxoporticnal to0 sin 8.

Yaving moment due to yawing - vwhen a shell yaws,
there iz a torque exsxted on it, the axis of
which coinsldss with the axie of the yawing motion
and exorts a woment which opposes tha yewing motion.
This moment 18 called the yawing moment due to wawione
and 1s rspresextsd by Hw.
i

Units
uf/t?
Hf2 /t2




Unite
K HMagwue force - correspording to the cross wind m[/ta
force, when a skell spins, there is a Maguus
force acting on 1it, proportionsl to sin &, tut
acting perpcndicularly to ths plere of the yaw.
J YMagnus moment - the moment of the Magnus force. m,la/'l:2

-AM™  Rolling moment - the moment ihat opposes the m{d/'l:2

2 P Aln L1
Spai i Va5 cudede

»
d. Dumping factors 3
f Tbe rolling moment dsmping fector

AR
{ =
8 The creses wind force damping factor

L
mv 8in b

h  The yawing moment due to yawing damping factor
h= - H/B

A The Magnus forcs damping factor

o S
mv N 8in §

A

7 The Magnus moment damping factor

]
7 " AN ein &

>
Thess dsmping fuctors all have 1/t for unit.
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Chaepter I

Motion with Simplified Force System.

To simplify the problem ard to bring out the essantial points of the
theory, we shall consider first & shall subject to a force system con-
sisting only of the overturning moment, M, the irag, D, and a spin {euvtroy-
ing couple or rolling moument. We take

»

i i - e -
T = b eald O

where u ie the moment co-factor end B is the angle of yaw. We assume the
magnitude of the roiling moment tO be AN[® where A is the axial moment or
inertia of the shell =srd N the spir. The axis of the torgue AN K~ is that
of the shell.

Gravity. the crosz wind force, yawing mowment due to yawing, etc., are

F3 Y Y Y I e - |
for the present cmlived.

Since there are no forces transverse to the trajccicry, the trajectory
is linear. Therefore a coordizate sysitam with origin a! the center of
graviiy of the sheil, with its x axis pointing along the trajectory, with
its y axis in a vertical plane, and the z suis pointing to the right, while
not Galilean with respect tc trauslation, I8 Galilesn so far as angular
motions are concerned. See Figure 1.

Flgure 1

The unit vectors having the directions of the x, y, z axes are designated
es 1, §, k, respectivaly. {(These vectors as well as all other vectors
arve written with heavy letters.) Wwe cefine the relevant quantities.

B = moment of irnertia about a trapsverse axis through the center of

gravity.
A = unit vector in the direction of the axis of the shell.
W = the resultant vector anguler velocity of the longitudinal axis

sbout a transverse axis through the center of gravity (also
called thz creas spin).

H = total vector angular momentum of shell with respact to O.
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(1)

(1s)

By resson of the symmetry of revolutior which the shell 1s assumed to
possess, the total anguler momentum is the sum of twe comporents:

(a) the compuueni about the axis, which has ths direction A and
is reprssented by the vector ARA, aud

(b) the component transverse to ihe axis, which is represented
by tbe vector Bw.

Tom vector cross spin w is aqual in magnitude to A and is perpeadicular to )
Aand A . Ve thus have

U= A X A (Y
The total a.ngulaf momentun, )
H-ARA+B [AxA 1 .
The v:ictor equation of motion is thet the rate of change of angular
momentun, ﬁ, is equal to the impressed vacicr cowple, designated by G.

If we teke N as variable we fird that

® L[] [ 3 r,..
B-ARA+ANA+B[A>:A‘|+B LAxA .

term is zero sinmce A and A are paretlel. Thus

Do

The}xx
H- Al + ARA + B [_Ax'z'x].-.e.
-

On the preseat assumption, the vector couple G ccmsists of two terms, the
couple M and rolling moment AMT . Iel us sec how we may express them
as vectors.

x€
M is aqual in magnitude to p*sin 5 and the axis of the couple is
obviously perpendicular to the trajsctory ani hence to the unit vector i,
and tC the axis of the shell.

Consider the vector, [; x i\-_‘j ; this vector is, by definition of the
vector product, perpendicular to 1 and A and has the magnitude sin 3.
Hence, the moment M is expressed as the vector, p [1 x A] « The rolling
moment, AE[" , has by definition A as its axis and the masent is assumed
to be negative. Bence we represent it vectorially as -AN[ A.

Replacing & in the preceding equation by ite two components, u[i x A‘l
and -AN [T A, the eguation becomes '

H=ANA + AKA + B | Axk’] cultxal -aw[a;
= o}
this 18 the vector equation of motion. -
# Differentietion with respect to the time, t, 1s indlcated by the superposed dot,

>

[=4

22
#+In ballistic aotation, u-KMpd V e

-
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It ghould be notsd that since A is a unit vector, A is necessarily per-
pendicular to A, while [A x A ] and [1 x A] are perpendicnlar tc A by the
definition of & vecto: nroduct. Hence, if e ‘take tha scaler product «f A
into equation (1), all the terms vanish except AN(A.A) and -AN[" (4.sj. From
this

AN = -AN["
and

ANA = -AK | A.

By virtue of this, it is obvious that {la) may be written

(1.01) AKA + B LAx'A'_I = I_._ixA_] .
If the direction cosines of A with respect to the x. y, z axes are [, m, and n,
A=f1+mj+nk
A= i+ x'nj + nk
.A. = !i + ;j + .n.k
and
[Ax};:] -(,(1+mj+nk)x(i1+'n'xj+'ﬁk) .
Upon performing the vector mudtiplication, remembering that
ix1=0, 1xJ=k, in--k, etc., we have
Ax% e (u-nB) 1+ (pf - (B + (& - =Dk .
For i x A, wve heave
1x(11+m4+nx)--n4+mx.
Bguatiocn {1,0%) written out in full becomes
(3.01)) AN{f1 + mj + bk) + B [(m’x’x - oh)i + (of - fH)J +
i . -—
+([n-ml)k -p[-nj+mh |e
In this theory, the assumption is made that the yaw is smzll. If the
Yaw is small, then the i component, the magnitude of which is cor 3, is
elways teken as unity, and therefore the i compcnsat is not involved in
this theory.
Since the 1, J and k coaponents &ai'e independent, there are three
equations, ocne for each component. We take the J end k components:
{2) {J component) ANz + B (nl = {&) = - un,
243) (x component.) A + BUR - nf) =+ um o
3
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82 -

{ 1s cquel in megnitude to cos 8 &= 1 - 3 and f = - &

-83.

e

Now, m and n are of the order of 8. Hence, in neglectiug puch terms as ni ’
we are neglecting a term of the order of (882 - 82 8) 1n comparison with 8
end in taking { = 1, we are neglecting a term of the order of 22 in compar-
ison with unity.. We now tske [ = 1 and neglect the terms in [ .

Equations (2) and (3) then become

(2‘1) AN - BS = - un
,(3'1) Aﬂfli'ﬁz'--.bu:..

Multif g (2.1) by & = -1-1 and then subtract from {(35.1) with the
result, :
AN(-22 + D) + B(R + 30) = u (m + in).

Since -(1)2 = -1(-1) = +1, the first term may be written -1AN(h + 1)
and the equation becomes

&) -AAN(R + 38) + B(8 4+ 18) = u (= + 4z).

n We now substitute f for (m + in) and call 7 the complex yaw.

The camlex yaw 7, 18 represented on a plane perpendicular to the
trajectory es indicated in Figure 2.

9i n n
s
axis of reals o ___M m
\. e Z
OxiS of /Mmaqinosses
Flgure 2

The axis of reals points upward in a vertical plane along the y axis
and the axis of imaginaries points tc thes right along the z axis.

With n substituted for m + in, (4) becomes, upon division by B
(2.2) F-t1an-Eqao,

8  if O is used tc represent AN/B.
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To solve this equation, it is convenient first to eliminate the 3
term. Let us write it for future convenience in the form

(4.2) i - 4BR - P =0 .

Ve ncw meke thc suvsiitution

_1 N
n =y exp §1 J( Edt .
o

f— -1
Upon differentiating once, we have

JI
1.
Edt_l (EIE)-:
% =1
1., r
-2-1) Ba

NE T :
= exp éii Edt liE(&-.}-izy)o-y«rg«r
2 2 2
— . T
1 o 1 1
= exp §1gEdt|y+(-2-1E 5 1B)y + (- KE2+?))] .
. —-'i_

Unon Bubstituting for n, 1, and 7 in (4.2) it becomes

expL t r[+mv+( T E +%'~)y—

~ -

-e@L Edt] . [;"4' (%2‘ ’F"'%ié)y

. b ——

and the equation for y is
6

Y

-(h.3) -‘(-r -F+-§ é)y-O-

5

- 1E(y +

(V] o

iFy) -

Y,



Upon substituting for & end F their values as obtained from (k.1)
and for tha present teking {I as constant, that is, neclecting E in (B3},
we have

P23 192 &
(bab) F+{f -pgvy=0.

Thiz may be written

£ 2 v T4 T ADY -"';_Jysu
2a° | |
AT
8 ir _L; —m B
o Designating "l - 1/8 by o, we finally get
(1.5) Fri&Pyao.
»
For convenience, following Kelley and McShane , we rewrite (4.5) as
4} /‘ (Y 2 . e 2 -
(4.6) ¥ =qy=¥+{q)y=0
and make ancther substitution
I = _""H_"d 13: 4 = 5 .
From this
Yoy, Foiy+ryaiysry
and (4.6) becomes
ry + ray - qaymo, from vhich
(4.7) , i‘+r2=q2=0.
If  1s small in compmxison with r, we should have two.sclutions
4 for r in this equation, ore nearly equal S +q, and the other nearly

equal to -q. Hence let

Ve —m B e B =
¥ ¥ € o
o T M

By substituting ia {%.7), ii appears that

5 . g 2 2 2
3q+S+q + 2 +€ =g ®»0,

jo-

G:lwé,aii-i?lﬂ-ﬁq-:) .

29 = e
¥Keiley-Wcbhans, BRL Report LLG, 1GG4.

*##Kelley-McShane refer to: He Jeffieys

(1923) p.428, aud G. Wentzel. Zaitschr

6

-

Proc. london Math. Soc. ()g), vol. 23
{r o Physik, vol.38 (19383°p. 518,



From the definiticn of ¢,

n

it = a{log y)

and
t

{ rat = Jog y - log ¥, -

£
From this, log y = log y. + ( rdt
T 0

and Y=y e il AR .

| -

t % |
Y= .‘.’2 exp i (-5 - Fh)as I o Toms, yl and Jo are coanstants.
| |

2
2

¢ = (4

and +q-+£%°~
Furthermore

Q a 1,0 &
x"Fas - 3GE*3 -

Since A and B are constsant,

ol 14
]
= e

vhich we designate by - f ,

vhere [ is calied the rolling moment demping factcre We have then,
T



substituting for q and §/2q, for the two eolutions

y=.)'lexpfé-g(ma+{-g) da
5 :-3'20@@5(- 1(10'4-_(-%) d:]] .

Q

)Gy ct

Recalling that n = y exp I%— %2 { Qdt | and that the gerersl solution

— -k
is the sum of the two solutions, we have

t

P P
1 2
(5) n=K e +K,e
1 B 5'7
where Pl--z-S Ljﬂ(l-ﬁ»c')+[-~6 at
and P m(l-o)+(-§—jdt.
e 2 | & o

In {5), X, and K, are arbitrary complex ronstants determined by the
igitial conditions.

Interpretation of Sclution

For those who have now had experj\.e
/

an. interpretation of the sclution (S} ie cffered.

i v
Coneider the series expansion of e’.

2
y R ﬁ
e=l+,y-r—!'2 +3+etn.-

-

Upon substituting ix .for y in this, we have

ix- - ;'1x5 x ixs x6

Fw - —3—.'-4- E?+ igij—f-.-og!'t';‘ Se000 =

=14 ix - =
2

-
.1=x2+x_x6+ . x’_‘.xsd_
A EF H GT 0eo0 + 1 x--j-r.-s-r ) .

The first term on the expansion of eix is the series for cos x while the
8

cs in the fleld of compiex quantities,



expression in the second bracket ie the seriss fcr sin x. Hence we heve

eixncosx+1sin;:.

For the case vhen p Li X A_I is the only component of ths force system
and § = { = 0, the solution, as we have seen, is of the form
2001 + o)t 2101 - olt

q=Kle‘“ +K20“ .

Let us write this as
(6) n= Kleiqt + Xgeunit

end let us &lso assume for s3mnlicity that Kl and K? are both resedl,

Since m is the real part of ;5 =ud n the imsginsry part of y, then in

view of the interpretation of eu, (6) may be written as:

m !& cos mjt + K;a cos m2t
(6.1) '
Lz-. I’.l sinalt+l(28ma2t

Consider an epicyclic motion of the following charactar. lLet there be

i

& circie of radius KE as shown in Figure 3 and let a point P move on 1t with
a constant angular velocity @ With P as a moving ceater, let there be
another circle of radius 1& and e polat, Q, moving on it with a conetant

angular velocity @, . w,t

-
wi

Figure 3
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n —1

1 | 3

A S -
oy P —1

i l\r i 1' gh £ _\ . . r-;-

n { gin [ 0(X+0)at | +- K 2in | 5 } G{i-G)dt e =

= kxl - ( ) 2 j M\1=0) Xp L_2

If §-m O is the axis of m's and 6 = =x/2 is the axis of n's, ws have
for m end n at any time t,

maxlccs aslt+2£2cosm2t

-

n-nflain mlt-c»!(zeina)at.

Buf this 13 the same a8 given by (6.1) end the result esteblishes the

In cases of practical initerest, neither & nor f is zero. Iet us

revrite P, and P, of (5) as

P =13 fn(1+c)dt+% g(_{-&/a) as
1

(o
Fpelz )@

I

(1 - o)at + - g/o) at .

o=
\_’s

The first parts of Pl and P2 are imaginary and the second parts ave
real. In view of the fact that o 18 no longer taken as a constant, the

angular velocit.ies @y and w, are noc longer constant, The real second

parts indicgia that the amclisudsy

b

S3E L0 AULKST wlther.

S0, in place of (6.1), we write

o= chosggn( +o)dt_| K08 -5- 2{i-0)dt j'exp

10
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Chapter Il

Equations of Motion with a Spirning Coordinate System.
The Spins Caused by the Cross Wind Force, the Magnus Force and Gravity.

The Spiuninz Coordinste Syst

In the preceding, we have folicw.d the methods of Fowler, Gallop,
Leck, and Richmond in deriving equatious (lm) and (4.5) and the methods

‘A"'IA.-‘ Yer aTT mar owd u-C\----. ivt A\‘a-.--t—n S matesdd aca Ten doancadid o -
AV WH W W AW  SAsawe " asLanon VML) VAW W WAV AWEA o va S vLiAg

the motion in the presence of a cross wind force, and otber forces trans-

verse to the trajectory, we depart from Fowler, Gallop, Lock and Ricbmond,
and adopt & coordinats system which is atiacbed Lo toe actusal. trajectory.

A3 in Coespter I, the uait vector, i, plints along the trajectory, the unit
vector, J, is 1mt in a vertical plane through the trajectory, and

the unit vector, 8 initially borizontal.*

As a result of the cross wind force and other forces having components
transverse %40 the trajectory, our coordinate system will have a component
of spir, @, aboul some sxis trumnsverse to the irajectory but no spin avbout
the trajectory. By virtue of the spin, the coordinate system will not be
a Galilean one. ¥We proceed to derive first o and then ihe equations of
motion in this spinning non-Galilean coordinate svitam.

Consider a body of mass, m, moving with velocity, v, in the direction
indicated by the unit vector, v Its vector momentum is evidently mvr.
The rate 0f _chang: of momentum or the vector force is made up of two
components, mvr and mv¥. The first component, paysmilel to ¥, is the sum
of the drag an? the tangential component of the force of gravity, while
the second camponent ie a force perpendicular to ve This is apparent
since T 1s a unit vector and tue only possible change in T is a change
in directicn. See Figure .

T -
T vlcrr
T+AT —_ Y
Figure 4

If we designate tbe vector force perpendicular to v by !'n, we have

r
Fuwns
mv

—
The deviation of k from the horizontal direction and J from the vertical
plane will be discussed..ini Chapbe¥ ¥ It will be shown that there duviations

are smsall.

11
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Thus, the angular velocity of the trajectory, =, 18 equsl in magnitude to

|}

mv

As @ wector, it must be perpendicular to 7_end also ¥. Hence; the

. F
8pin of our coordinate system, w = T X T = T X qu .
w
It is spparent that E% may he raplaced by mlv s Where F is the

resultant force on the shell, since the tangential ecomponent of P mulkes
o contributioca o the vector pruduct.

Ir the future, we shall replacé v by 1 since by definition, 1 is the
unit vector pointing along the trajectory. So that

[ ] F—_'

From page 2, we have a3 the aguation of motion

~~
(3
~

o i _ r- n.-'

Ay + AMA + B [A XA |=G
The sunerscript . indicetes ‘time derivatives in a Galilean coordinate
system. If superscript primes indicate time derivatives in our chosen

coordinate systim, the job is to express N, A and R in terms of N! .
s ® at® .2

Ny &N CralsaiaN

As the first step, we state the following theorem:

{7.1) I,=r +@xr
L y i o
! /Ly’ :
[~ 7| x|
¥
Z
Flgure 5
In this, r] is the rate of change of the vector, r, as measured in
N -
T\\ space 1 (non-Galiiecan) with axmas X yl, zl. Suppese this space is

{ spinning with respect to Galilean space, 2, with ar engular velocity, m,

as indicated. It is apparent that the veloecity in space 2 of the point
P at the end of r caused by the spin @, will b¢ & x r. It may be

12



rigorously shown thet ths rate of chenge ¢f r in spsace 2, i'2' , 18 to be
o

! . Hence, since space 2 is Galilean,

From this theorem, it follows directly that A = A' + @ x A and by a
second application that

R=A"+oxA' +2 XA+0OXA' +me°—x'XJ'

=A%+ 20xA'+0' XA+ DX mxg
Although e hes no component sbout the trajectory, it does have a
component @ sin & sbout the arxis of the shell, which makes an angle 8
with the tangent to the trejectory. We shall neglect @ sin & in compar-
185h WIth 'N.-"S6 w& tike “the splh- N unchanged in our coordinate system.
Upon making the substitutions indicated sbove in (1), we obtain

AR'A + ARA' + AN X A

( e I . II
{1.02) +BtAxA"+E&xEn' xA]_i +2i_AxEnxA':l1]
. — .

-l-r:v ‘"l_-“q = *
l.:: LWAL-LAJ l( G

To simplify this result, we make use of -2 theorem of vecior snalysis,

el

lﬁ x LB x Cj

r the two triple and cne juadruple products indiceted by the
superacripnte I, IT and XXX, respscilvely, we obtein

= B {A1C) - (A1B) .

(1) E\ x Im' x A-ﬂ = o' {AtA) - AlAt®') = @ - (A2')A

(11) 2rA x [m xix"‘]r 20 (A'A') - 27" (A@)

(III)rA rmx o x AJ—ﬂ-m(ix'pr—l) - [_mxA—i(A'w) '

In treating the term (A-m')A of I, we consider two cases. The first
case is the one where @ arises from sercdynumic forces and is therefore
proportional to 5. 3Since in the final A, we considsr only the J and k
c nents which sre themselves rtioaal o &, it is sppaxent that,

L w

#The use of the superscript dot is a.unropr..at; «ince sgpace 2 is Galiiest.
~*The name Coriolis is associated with a similur transformatiorn. See
"Cleseicel Mechaaics", pp. 136-137, by Goldstein.

i3



(2.03)

for this case, (A*@’)A is at lesst of order 58' and may be neglectesd in
this fixrst order theory. In ihe seconé case, @ arises from gravity asd
@ and @' are always perpendicular to the particle trajsctory; to thu
actual trajectory, they will be g0 nearly perpendicuiar that the product
(A*@') Wwill be of the order & and (A.®')A of the order of 8. This also
is neglected.

In II, gince A ig g unit vector, A' is necessarily perpendicular o
A. Bence, the scalar product (A*A') = O. The spin & is perpendicular

to i, hence, the product (A*>) is at least of the order 8 and A' is of

the order R'. The axnreasaion ..DA'(A-m) ig at lesact Af tha ardaw 8]!1 ani
= MMTrRRAIiN «2AT(Asml 1g at 2east 0f Tas orler IO =

is thus omitted in this small ysw theory.

- - Y = N . .. = -4 . - . ~ 1
il ALly; LOE BCALAr proauct (A L®x A..l) = U, 8lnce LQ X AJ is per-
Pendicular to A.

In view of these comsiderations, (1.02) may be written
AN'A + ANA' + AN mxAJ +
{—

If the spin @ is caused by serodynamic forces, @ will be proportional to 8

and the term | ® x A_-] {A®) will be at least of the order ° and thus may
e neglected.

&

-~

proceed to ccaopute tig spins, D B, and (og caused by the cross
wind force, the Magnus force and gravity, respectively, thus obtaining

the resultsnt spin o= <+ @ + 2
DY N 8

The Cross Wind Force

*
Tne croas wind force, L , is defined to be a force which acts per-

pendicularly to the trajectory in the plane of the yaw. For this treat-
ment , {48 further assumed to be proportional to sim 8. S0 we take

L = Asin 8, /

and call A the cross wind force co-factor, A ( ‘A= CosdL)
Consider now the vector difference ) '
X : - (-
(A - cos 8 1); (see Figure 6). [~ Cos & —
Figurs 6

¥In batlistics, we write

L = X pd°u” ein 6. (See Hayes' Elements of Ordnsmcs, p. h2).

1k



It is obvious that (A - cos 5 1) hus the magnitude sin b and that it is
perpendicular to the trajectory, the divection of which is i. Accordingly,
a correct vector representaticn of the cross wind force is

A (A - cos Be1) .

i’

’\

*
-

cu (7) it sppears that the spin ® ; of the coordinate systenm,
caused by he cross wind force, 1is

o 4 Al ccoent) NS, . T _-:t;_
wn-‘.n —————————mv -mv LL PR £ 9 QJUOL].K _Jﬁ =
=-L1xA_J T LixA].

Upozn replacing -7-‘— or by x, we have for the spin @, ceused

mv em T &
by the cross wind force,

i =i
m“,:n'ixﬂj.
= P -

Magnus Force

The Megnus force is e force which arises from the interaction of the
boundary layer of a spinning shell and the wind stream when the shell hes
an angle of yaw. Consider a tennis ball or a baseball under the conditions

elrmrn 3w

chowm in Flgure 7. As = vesulh of the interaction between the wind siream
end the boundary lesyer. the velocity at the top surface of ths ball will be

v e j e T wem Yy wew  wasw B “\.A&G\' o Ot

rection of spin .
N
/ \

\ ) ~<+—wind velocity
7

S

Figure 7
less than the velocity on the bottom surface of the bell. Associated with
this will be a higher pressure over the top thun there is on the boti{om
croducing s force which accelereiss the ball in s downwerd directioun. Thails
is what happens when a tennis ball is given a top spin.

Consider a shell spinning as shown in Figure 8. As a result of the

sSpin of shal/ . 7
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pressure distribution mextioped, thers will be a Magaus force, XK, acting
perpendicular to the plusse of the yaw, a5 indicated, which should be
approximately proportionsl to the spin, N, the wvelocity of the sheil, v,
and to the sine of the angle of yaw, d. If the factor of proporticzality
is representsd bty fm, we may write

* 5
K K = fmvN s8in & (in magnitude)

anéd by —
fmvN [B.x i | as a vector.

ell A¥* the Magnus forre

C
by K ia tharafore

We shall represent fN in the above by A and
damping factor. The contribution to i caused

:_—_a_jxmax z\rﬁx‘-_
- = m -.Lu-——-

The spin a5\caused by the Megnus force is

e

— = . i — H
2232 oni 1 x Lp.x ij]‘J .
Lm —t I
—
Cravity

The force of gravity is numerically equal to mg vhere g is the
acceleration caused oy gravity. This force has a component perpendicuiar
to the trajectory equal in magnitude to mg cos 8, where 8 is the inclina-
tica of the trejectory to the horizontal. Therefore, in our coordinaste
system, the component perpencicular to the irajectory will be represented
by

*
- mg cos 8 3 8

It fellcwe from (7) tbat the spin ®,; Ceused by gravity, will be

-g cos 6 j)

ix =

since 9% = =28 08 @ |
v

=6'k

The Resultant Spin of the Coeordinate System
The spins caused by the cross wind force, the Magnus Torce end gravity

- e

o =K [} X A{I 7

n

%-Mmeﬂ,

(_ mgtﬁ'k .

Yo

*In balllstic notation, we write, Magpus ?erée-KsKKpdzﬁv sin 8(in meanitude).

¥ The damping factor A 1s to be distinguished from the ercsswind force co-
£actor Ao

(8)

**In view of the small rotsticn of ocur syztem about the trajectory, the
component of the gravity force will not be exectly represeated by - mg cos 6J.
There will, in general, be a zmell k component.

[0}

1



T T T T TR R o an Ry

Chapter III

The Yawing Moment Due to Yawing.
The Magnus Moment,
The Equation for the Ccmplex Yaw.

We have so fay considered the follow’.g elemente of the force s;'rstem:

Drag

Ovarturning Couple
Aytay Cotbds

Cross Wind Yorce
MAgnus Force

Gravity

The last three forces contribute to the spia of the trajectory and,
hence, tc the spin of our coordinate system. In this chapter, we consider
the yawlng moment due to yawing and thé Magous moment, snd derive the
equation for the complex yaw.

Yawing moment due to yawing

N
The yawing moment due to yawing, designated bty Hw , is the moment
which opposes the angular velocity of the axis of ths shell.

Ve define a yawing moment due to yeawing damping factor, h, by writing

By =~ hBPBr.
As we have seen in Chapter I (puge 2), the angulsr velocity of the sxis of
the shell w may be expressed as (A x }{). Thus, if we are to take account
of this moment, we include on the right hand of emation (1.03) cn page 1k,
-h B (A XA4)
i:N afd’dition to the overturning moment, p E x A] , and the axial couple,
- Ao

L] v
As has bosn meptionsd, A iz the angular velocity referred te Galilean
axes, whereas, in thiz problem, we refar the motion to axes turnjug with
the trajectory. We thus heve to express A in terms of A' and thw resultert
angular velocity of the trajectory, e» As we have seen in Chapte II, 2 is
equal to A' + ® x A, and thus

Axi-AxA'-«-AxLoxAj .
. |
|

As we have also sean in Chapter II, tac triple product 4 x! ®x A
expressed as @ - {(® ° A)i.. Hence =

.=hB D\____xl l- -hBi E\ xA';] + o~ (o A)A} »
stlc notation, Bw is expressed by '

KB' [} dk vw
in which KE is the yawing moment due to yawing coeiiicieat and w i3 the

vector angular velocity of the axis of the shall.
7
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{1,04)

‘fhe term (o * A)A will be omitted since it 1s of the crder 8- in the
J and k components. Thus we have, including the moments sc far CuﬁSidzreu.,
for the right hand side of {1.03),

uExA:I-AN!"A -hB{E\xA']-c—m}.

Magnus Moment

Cn page 15, it appeared that the vector Magnus force is proportional
to A x 1. The moment of thie force Iz porpondiculai VO Lue force apn o0
the axis of the shell and is therefore properly viven as prcporiional to

O A is oi
Ax|{anx1 |. We agssume =2 proportionality fector of ANy, wheic 7 is vhe
— —

Magnus moment demping factor, and write the Magnus moment,

.J*-Ally[_:xizxi:]_l .

This term is to be added to the right hand of equation (1.03) in addition

to the moments mantionsd abovse.

While 1t 1s commonly assumed in the small yaw thaory that the Magnus
force and moment are strictly proportional to the spin, there is 1little
experimental evidence to back up this assumption. What evidence there is
indicates that the force and moment are not exactly proportional to the spin.
On the other hand the evidence indicates that the Megnus forte and moment
are properticnal to & for small yaws.

Inu...mding all the moments so f'ar considered, the right hand side of

{1.0
Ex!:] ANTA - hBtE\xA:]+m} ANyLAxLAxi:I_l
If the term - AN["A is cancelled against AN'A, {1.03}, see page 1%,
becomes
f— = 1
' H v AT, t o {A s =
AN({A +LcnxA |)+B1\L.-....A.J+-n A ¢ o) _cbe_,]

- '.1[1 XA:]- hB{[AxA'j +a;} + A.Ny[.xr‘}xij.} ]

with the spin, m, es given in equation (7) of Chapter II by

® = n[i xA_'+ )\[1 x[z;xij]afe' k.

We are to expand (1.04) in tems cf the § an2 k components, the compone
ents of the complex yaw, and omit the I coapousuts; if any, siuce in this
sm2ll yaw theory, { = 1.

*In ballistic notation, we write J = K;p a° N v sin 8 (in magaitude).

18



T

4 s IR RO o T LS

- {1.05)

o

Before carrying out this expansion, it is couvsnlent to expand the
vectors and the vector products fa (1.oﬁ

For @, on carrylng out the indicated vector muitiplications, we £ind
i

with
A-.(i‘i"md‘.‘nk,

a= =nn4’}=-’},‘,+(m+7‘n+9')k.

If the J and k componants of the vectors ‘and vector products in (1.04)
are indicated by the notation ( )  x, e have

(@), o = {-xn' + W')J + (km' + W' + 6%)x .

In treating the term (o ° A)LoxAj we need to include in @ only the

term 6°'k since @ will be proportional to 8§ for the cther components end the

tern itself will be cf the order 62 for theec components. . :

With @ = 6'k,

((“8" A) E’s" ‘])3, y =290 .
\

On the right hand side of (1.0%),

{rixA:l)’ = on) +nk , .

KL‘.‘*J‘]}J:'— Rt
( !:Axi—l\ -r.;ei-nk.a

sing thesa expresaiona for the vectors snd vector procmcu in (1.04),

dividing hoth nidss by B, axpressing the quotient -3- by 0, and collectirng
the terms in | and k, raspectively, we obtain

S(m* +xm + N. + 8') = 0"+ (-xn' + Am') - no'° = -%n-o- hn' 4+ hen - hanQym.

a(a'+en » )+ m" + {m® + Mt - 6%) = %m - hm'-hkm - him - ho' + O -

L N S N B T S P ] IR oMU O <, BN Sy i (OO R T P

EY v



We pultiply the first of thsse equetions by -1 = -'f:i and add tc the
seconid with the result:

P —
QL-im“+n°-n(im-n)+ )\(-m-in)-iej

+m"+ in" - x(m’ + in’) - A(dm* - n°) + 109" + % =

= % (m + in) - 2fm® + in?)- he(m + 1ia) + h A(im - n) - h8’ - Qy{im - n) .

Replacing (m + in) by n, the complex vaw, a3 in Chapter I, and arranging

[ T ol e F L3
LuE Ll . We anve

N® + k' - iAn° - iGn? - ilden

- - B g+ bt 4 heq - dhan + 10yn = 106° - 6% - 1062 - pnoo
or
£L06) ¥ - 1(Q + ik + ih + A)y° - %+ iQk + QA = 10y - he + ibA | =
SN —

2

= 109° - €%~ 1z £°° - h9’ =

- mE,, _ ng*2 . 0 (o™ + he')_—l.
n L]

1}

b
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(1,07)

(9)

Chapter IV

The Soclutions of the Equation for the Complex Yaw, Stability.

In tuls cha;:ter, we derive the solutions of the equation for the complex
vew (1.06). ¥e first consider a psrticular solution cf the equation. We
insert the particalar solution in the equaticn and subtract the resulting

4.2 men

equation from (1.06). By so doing, we gat an homogensous eguatiocn.

The Particular Solution

We proceed with the derivation of the particular solution and shall
considar later the soluations of the homogeneous equetion.

Following Kelley and McSna.ne, let us write {1.06} ir the form
n"+anp' +dy=c .

Asevme & solution of the form

ﬂ'%"‘ €,

on the assumption that the 7" and n' terms are¢ relatively smail. On inserting

the solution in (1.07) and zsglecting 7" and €', one finds

(

'
A Y
)

€ = =

oip
L4

and
c &, ¢\
"=y -% ( % )
In terms of the notation of eguation (1.06) this gives

iAN

N o oo '-
n ol

_j

?oon f£t/sec and a twist of rifling of 1 in »0:

& 588. 5 I-&c'l/' sa¢

. |
Sute

] i.39 gec
h 5.51 sec™t
A 0.52 sec™t

. w2/ 2
T 1017 lo.£¢ ,/.'.e::

K/B 52,000 sec™

Qx 819 gec™2

y -2.06 sed™t
2y =l212 sec™?
21
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If ne 2, 6 . and h9 in the first brackch on the xight are neglected
and the second term, ip neglected entirely, {9) Lecomes

nswi}‘&@ 6'_+1AI€5cose .
(9.1) = oo

In view of the fact that the z axie is tbe axis or imaginaries, (9.1)
indicates, on this approximation, that (e2) the projectile is pointing
directly to the right, and (b) the magnitude of the yaw is given by

o _ AN g cos 6
A TR

The preceding is therslore & derivation of the result given in Haves.
Cnapter X, p. 420. Essentially, this expression for what is called the
"yaw of repose" was used by Fowler, Gullop, Lock and Richmond in predicting
the "right drift™ of a projectile with a satisfectory asvsswsul with experi-

~d
[e -3

rent.
Solutions for the Homogeneous Equeticn
As was pointed out, if we subiract the special solution (9) from (1.06)},
wve gat the following homdgeusous equation,

 —

{10) 1" - 1(8 + 1x < 1h + A)' -t‘/B+m{s-7 - 1A) -hn+1hﬂ~.~,=c .
As in Chapter I, we write (10) in the form

n" - 1Ey' - Fn =0
and make the transformatiocn

obtaining - J ]
e .
y*'+ (3 -F+31E')y=0.

Upon inserting the values of E and F from (J.O), this becomes

2 ==
%—-%+-‘2-2-(=-1n+1h+217-7\)+%hn+

¥+ %i(nk*—h)\)-ll;(az-'rhe-)\a) + y=0,.
£1(0' + 16 + 1! + NY)

e R,
If we neglect the products and squares of the damping factors and also

helr derivatives and write

¢
atsfaa--fa,



ot e

"3 o

M,

(12)

the coefficient of y ir {(11) becomes

2
|_%--% +i§'h~x+av-g;-

In viesw of tkc fact that

i

n

1

i $i c
T-5=@G),
this may be written

(3 0)? |1 2(h-n+27 {0 -

IU

B gy
L

’I'his quantity (12) is -q2 of equation (4.6), page 6. Upon taking the
square root* ¢f the bracket by the aid of the binomial theorem, i.e.,

1
E+x§=l+%x + s

and throwing away terms of higher degree than the first in x, we obtain
{Qo+i(n-n+27 {)/o-)\/c}
b Y
g {ncfi'\h-n+27 f)/a-/yc}-

+4q=4+

| = l\)IF

-q.z_

In tsking the derivative & , we consider only the time derivatives of
 and o and neglect the others. Thus , s before (see page T),

o .
~§§=§(f~§)-

¥Following & suggestion of O.R. Murphy (ERL Technical Note 703}, we may

replace the bracket of (12) by

(P + iQ)

a+1b="YP+ 1Q ,

82 -2 = P, 2ab = g .
According to the approximation by the binomial theorem,

—E-
\IP+1Q -{;-& T

while, according to tre above' exact relations , the first term should nat be

If now we place

F T =
P but gspproximately | P 1+ 4 pa + On the other hand, the secondi of
these relations is fulfilied by the epproximation of the binomial theorem.

25
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Bence , the solution for y is ;

-T2

rf i ;
(13) y=yl‘—’xpltﬁ'ijiﬁo-%+il‘:h»-wee*"?' l)/d-[+% }dt -

i —4
r—— [ e :,:,wo -
1 A L0, g ll X
yzexz)! =5 (ﬂc-—*ii(n='»+~, -f,‘/avf-z;!r“
where ¥ and y, are complex coastants.
if we urite this as
Q. Q.
1 2
y =3 +J5° ’
then, in vizw of the fact that
Lo faa]
n=y en‘pl =1 E dat l
f =Y o -
acrd that L“ J
Es (2 + ix + ih + }),
we have ior 0,
(ak) n =K exp %if(0+ih+in+7\)dt+o,l +
L — o —d
2, f .
K,expj3i f (@ + ih + 1x + A) At + @,
c
where K.L and K2 are complsx counstants.
Finelly we write
P P
{1%.1) 3 = Kle 1 + Kae 2.8
From (14) and (1i.1), it is seen that .
l t , r ._w e ' ; ) —-{
(15)Pl=-2-f 11al +0) +A=-=Nol-]lb+x -f+85/6+{h-x+2r-{)/o|>at,
) — o ~4j

J
~t

&
*

t 7 - = I1
;%jiiE(l-u)+7\+7\/0 -E+n—l+6/v-(h-"+27‘i)/°
J =

\‘-‘

Since the stabiliiy factor is assumed to be appreciadly greater than 1,
the terms in A are wegliigible c ered to those in O%*. Hereafic>=, A will be
*E.g., for the 20mm Practice Projectile T114 fired at a muzzle velocity of

3026 ft/sec vith a twist of rifling of one turm in 25.4 esiibers,

Q = 1525 rad/sec,

A= 0.2 sec-l {apprcximetely).

nl




neglected. BSguations {15) then be. ome

. b N : !
P1=§ f m(l-pa)-\_1-1+n-[+&/o+(h-m+27-,{)/af'dt,
15.1
(15.1) - t[ e . 1)
Pa=2 f,is(l-::)-L‘:vn-x'a/ﬁ'\h"‘ﬂ’r?’-‘r“U/“IIdt'
O 1§ _J)

The Csaered Solution

If the particular solution (9) is represented by ¢ + id where ¢ and &
are both real, then the gensral solution {thc sum of {he particular solution
and tpe solutions or the homogeneous equation) is

P F
ﬂnlﬁlel-riiaez-'rc-rid.

etc.,. ths constants K end

If the initia} velue of n is Mo e

satisfy the conditions:

. = K, +K2+cc+iciﬁ

! = ' ' el . 8 &
Mgy = A P.‘..,O * K2 PE,O S 1d‘o

Stabllity conditions for spinning sk

V]
w

As we have seen in Chapter I, the imaginsxry parts of Pl and P2 determine

the frequency or angular velocity of the motion while ths real paits control
the amplitude.

A shell is ordinarily said to be dynamicslly stable if the amplitudes of
both motions diminish with time. Thus, obviously, the conditions for this

scrt of Aynamic stebility are that the real parts of Pl and P2 mist be nega-

tive. However, in such a trestment of thes dynamicai stability of shell, no
attention is paid to the variation of these reciors witn velocity and, a8 &8
rule, the factors vary considersbly as the velocity changes. It wilil be

noticed thet the amplitude depsnds not ou the integrande involved in Pl and

Pa but on the irtegrals. ‘'herefore, the integrand may be pozsitive over

cervaic parts of the velocitly interval considered while the integral may dbe
negative. It is apparent that the integrand itself should be negagive at
the muzzie veiocity at which the shell is fired beceuse, if It is pot, the
large amplitudes might develop before the integral becomes negative once
mcre. Thus, practically considered thg;e are two factors that hevs 40 be
considerced in designing a shell: (15 the iultegrand of the resd parts in Pl

and P2 should be negative in *ths neigkkorhood of the muzzle velocity, but,(e)

2%,
—r
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on the other hend; if the integrands are reasonably negative in the neighbor-
hood of the muzzle velocity, it is not essentisl thet they be negative at all
other velocities which the ghell assumes on its trejectory. ' ' It is known

that there are quite a numbsr of shell which, in the narrow sense of the

word, ave dynamically unsteble on certaln pesits of their trajectories but
nevertheless are exceedingly accirate. It would be throwing sway mewy perfectly
good shelli designs if one insisted that the integrand be negative st all va-
locities which the shell takes orn during its trajectory.

If ¢ is resl, the four comdltions for the satiefectory damping of the
yaw of & shell on a given trajectnry are:

near the muzzle

(@) | B r-frdfos(annv2r-s e
: (dynarically stable)

('b)5+n-_(+&/0--(h-n+27-,{)fo >0

along the trajectory

tr— o3
4 b |
‘ h o o = ’ o lh - ‘ - r =~ S~
{c) J = { +06/c+ ! £+ 27y - /e jat =0 (oo, HECEFEAIALY
T - dynemically stable
£ —l at all points on
F 3 { trajector
(a) ; h+x -f+3d/0~ {h-n+27-[)/g ldt>o,thet~wj ory)
O |- |

¥#*
t is any time aiopg tne trajectory .

As Murphy suggests in BRL keport 853, for practical purposes, the O's
oo the right of the sbove inequalities might well be replaced by positive
constants.-

*

As Gterre and Poor have polated out, it may be dangerous to design s
weapon ior which &ll four stability conditions are satisfizd only vhen
the shell is fired for a certain mizzlis velocity. If the muzzle
velocity were inadveitently changed, the conditions 'a' and 'b' might
no longei: be satisfied.



Cheptex V-

The Motion of the Coordinate System.
Comparison with Fowler, Gallog, Lock and Richmong.
Ccmpariscin with EKeiley and McShane.
Neglected Forces.
Acknowledgments.

The Motion of the Coordinste System

As compared with the coorainate system Of Fowler, Gallop, Lock and
Richmond, which is attached to the particle trajectory, ours bas the
advantage that it deale with only ope vector. A, instead of two. A and X
{see 'below) As compared with tha' of ‘(e.'l.J.ey and MoShone#® it has the
advantage of resembling more closely a Gelilean system than one whose
coordinates oscillate with the projectile. However, our coordinate
systex has the dlsadvautage that the = axis, originaliy assumsd to be
horizont_l, will not, in genernl reraixn korizontal, and the y axis,
origineily in s verticeli pisne throt the trajectory, will not, in
generai, remain in that piane. However, it will be hm;'n that the Geparture
of the z axis from the horizontal will ve emall and the desparture of the
axis from the vertical plane will he also.

Consider a projectile moving vertically upwards. Let us taite the y axis
tially as coming out of the plane
X

A

—:

Fignre 9

of Figure 2 exd the z axis as pointing to the right. Suppose there is a
spin my of the coordinate system about the y axis, then the z exis will

<urn tCward the vervical with the came anguler velocity °y’ Place a vertical

Plane so that it will inciude the z axis and let ¢ be the angla, measured in
that plane between & horizontel line and the z axis. In this case, ¢ = @,

Lat us congider the general raae. Qn_;_sm:n the tengent 0 tha trsisctory

L & T  vaew A AR Y WW  waa vm wmy e — e

makes en sngle @ with the horizontal, let the z axies pe .‘..nt initially diref'tly

to the right and let the y axis be initially in tne vertical plane thru the
x a.xis. See Figure 10,

Kelley and McShane have adopted the coordinate system of Nielsen and Synge.

Cf. "Un the Motion of a Spinning Shelli) Quarierly of Appiied Mathematics,;
Vol. IV, ¥o. 3, October 1946, pp. 201-226.

Pal
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It appears that the component of wy about an horizontal normal to the
initial direction of the z axis will be m s8in €. So, in gemsral,

s = sin A .
A’

It is apparent that a rotation @, ebout the z axis, i1f z is horizontal,
vill not move the y axis fom the verticsl.

On the other hand, if the z axis is not horizontal, a rctation about it,

o, willl cause the » axis to isave the verticai plsne through the trajactory.

uoweVef, ¢ 1s approximately proportiossl to oy a8 loang &s ¢ i small. Thus,
the departure cf the y axis from the vertical will be epproximately proportional
to the prcduct my*caz aud will be neglected.

It is obvious that a rotation about the y axis will not chenge the
direction of the y axis.

It thus appears that the rate of departurc of the z axis from the hori-
iate cf ds e K

zontal 45 given by & = =, siu £, and ‘hal iths rate

©
wili be of higher order ia ths spins of the trejectory:

-~ 14 —"
oS Yy GXA8

Toe spin of the coordinste system caused by aravity, mg, has no componeiit
in my. The main component of my is that ceused Dy the cross wind force ) in
magnitude, - ky.

With an assumed value of x a 1.0, Hitchcock end srrington have compuled

[ ]
D g 9 g? at !a‘lv' a

t
eetil @ime T gin @0 ein 6

for two cases, one where the motion is undamped (with damping due to x neg-

iected) and cne vhere the moticn is damped with h = 3.2 and x = 1.0 This

was for a 3.3" shell with a velocity of 2080 ft/sec. The results were that,

at the cad of «6 sec., the maximum value of @ for the undamped case
sin 6

was less than .003 rad, and less than .002 rad for the damped case.
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Fowler and essociates reist the motion to a coordinate system attached
to the perticle trajlectory with o y drag and gravity acting on the particle.
In this system, they consider two vectors. One which we shall call Ap is
the unit vector having the direction of the axis of the shell; the other; X,
e unit vecicr having the direction uf ihe actual irajeciory, poth referred o
the coordinate system mentioned.

Fowler writes

+m +
tp = [y + 2pdp + o
X=xXhp +ylp + sk (x,¥,z are airection cosines.)

If we define the vector yew indicated byA as the component or the
vactor ﬁF noimal to the aclual trajectory, then with the coordinate system
of ¥FGLK

N\
L_\‘AF"X:(K'I?"Y)JF"*(nF-z)kF
since foag x =1 .
the ciner hand, the vector representation of our complex yaw is
(mJ + zk). Hence, if the small angles betwesn our and their cocrdinote
exes may be disregarded, i.e., if Jp = Js kF S ;B SN. Y, N =N =2

.‘F
FGLR introduce two complex variabies in their treatment, n and £ . The
definitions of these variables are es follows:
n+ctl= ap + 1nF , el =y+ 12

where ¢ = cos 9.

From these, it is seen that

n = {m, -y)+ iln, -z}, -

and Fowler's 7 ig equivelent to our f, except for the slignt differcnce
between our axes and his.

Cu page 337, FGLR give, with siight changes in notation, the following
equations involving n and § . 3

4 =
(3.613) % -(10-h-x+iA)q'- {«- +10(keAA-pYehea thA=k ! + X' ={K<iA) Ec-j 3

-l_i!‘c' - he! = c¢” sg = ifs = 10(0] + 16 a’Q)
¥ Vhere 9, ie the 1nylinat*on of tha particle tre, ectorys

29
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This is to be compared with cur equation {1.06) on pege 20. The differencer
are as follows: .

3 ]
. FGLR have two terms in 5:  ~(x' - i)A')n and + (k - 4A) % n o

b. They have & { term which they later dircard es being of the

b ]
AvAaw o "
T Ve - 2 -

)
¢. On the right hand Bide, we have two terms in the bracket of (1.06)

I'\‘

ng'’ . iho'
A =2aQ

vhich Fowler considers negligible.

FGLR give as the solutior (p. 339) for the siwplified homogeneous
eguation in n, with a slight ohange of form,

/ .Qd L4 1/ 2 P
{2 _go2k) - .
{3.6234) n {ae c. I Kie ™ + Ke

Fy

§=d

——

L

{Q(l+a)~Lh+t:+(h-n+27-!)/]

N J'uu’

and K.‘L ond Kz are arbitrary constants.

it may be shown that

1

(ﬂo\-%‘:

%% ]
~ s

In view of this, (3.6234) may be written

nol s-v

j(t--)dt :

-

P P
7 = Kle + K,ze

with the P's now defined by .

Pl.,P2=%j’ 19(1 + a) -E+u-l+%i(h_n+2”ml>'/ﬂj‘ dt .

This is to be compered with (15.1) on page 25. It will be secen that
the results are idantical.

Ancther commsnl on Fowler's treatment: he claims his result to be
valid oniy for large veluss of 2 cur resulis indicate thati his results
are of grester generality than he rexiized. In fact, they merely depend

W
o]
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on the ususl W.K.B. approximatioas {sse o. Q) .

Comparison with Kelley-McShane
=oupa.

Kelley-iicShene use the arc length as the independent variable, instead
of the time. Dr. Galbraith has kiundly traunsicrr=d Kelley-McShane’s equation
il .9)), BRL Report 4ub, to its eguivalent with time as the independert varisbla.
The result; with our notation for the demping factors, 1s:

H-if(R +ic +dh+ A+ V) -7 {f%-+ 10(k -y - 47) - 1 2880 0 é

u
Q 9t (14’%‘!‘% - 9",

*In view of the fact that FGLR made their observationms by yaw cards, they give,
in eddition to an expression for 3,th2 complex yaw, axpressions for 82 and for
¢, tue angle betweea s vertical plane through the tx ave:ﬁo Ty and the plane of
the yaw:
> 2
5° = o sin® gt + B° cos® at ,

2 s 3
$ = ¢ + =0t + arctan J coth (§ - g.) tan gt ¥ .
o z 1 > |

In these,
0 = maximum yaw
B = minimum yaw

q=290’

o = Je cosh. (q2 -3)

B=Je * simh (g - J)

tanh § = B_/o_
J = ao/cosh J = So/sinh J

¥ h +x
9 = ‘£ o Sk

h-x+2 -f+&/o
20 o

at

r\g_:
]
O%==¢ct

- ‘f h -« - ?7 -{ T
o ]
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If ttie is compared with {1.06) on page 2C; it is apparent that, aside from
the terms in ¢ which we neglect, the only difference is the term

g 3in 8 ., 4ve coefficient of 3. In view of the fact that this term is

P I P VTt T S o o -
Kallaxr end MeShans considsr it showld be dmitied.

omitted in “Exterior Bellistics", by McEbepg,. Nelley end Reno, it ie sppmrent
%hat

Nagiected Forces

We have 80 far neglected three slzments of thLe forces syatem heoanrae,
in praciice, the corresponding dsapiig {=iiozrs are negligible. These are:

< o an Sew A zzacsd .o
Lhe q‘.so'.':e WUS WO J'a;u%’

the Msgnus force due to yawing,
ths Maguus moment due to yawing.

a&. Tue force due to ysawing

The yawing moment due to yawing 1s produced by the product of
a force multiplied into the distance betwecn ths center of application of
the Porce end the centar of gravity. Tois force is the force due to yawing.
It is important in the motion oi dirigibles and of ipterest in developing &
toeory of the yawing moment due to yawing. It has e negligible effect on
the motion of ordinary shell.

b. The Mesmus force dus o _yawing

Juast as there is a Magnus force which corrosponds to the cross
wind force, so there is alsc a Magpus force dus 10 yswing. As 2 result of
the spin of a ehell, the Magnus force due to yawiag differs in magmituds and
direction from the force due to yawing. This force ie aiso negligibly small
and need not be considered in the theory of damping.

c. The Magnus moment due to yawing

Corresponding to the yawing moment due to yawing, if the sbell
is spun, there wiil be a Magmis moment due o yswing but thic Megnus momsnt

12 2lsc nugliglibly small.

)
W
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